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Abstract—Concurrency bugs, such as data races, deadlocks, and atomicity violations, present significant challenges in multi- threaded
programming. Detecting and fixing these bugs is critical in software development since they frequently lead to unpredictable program
behavior, system crashes, and security vulnerabilities. Traditional concurrency bug detection techniques, including static and dynamic
analysis, have limitations such as high false-positive rates, limited scalability, and poor generaliza- tion across various codebases.

Although static analysis techniques are effective at scanning large codebases, they often produce numerous false alarms due to their
inability to completely capture runtime execution behavior. Dynamic analysis techniques, on the other hand, can effectively observe
program executions but suffer from scalability issues, as they require extensive instrumentation and runtime monitoring. This study
suggests a machine learning-based system that im- proves concurrency bug identification by utilizing both anomaly detection and
predictive classification to address these challenges. The anomaly detection approach aims to identify unusual thread interactions by
analyzing execution traces and recognizing devia- tions from normal behavior. This unsupervised learning approach reduces reliance on
predefined bug patterns, making it adaptable
to previously unseen concurrency bugs.

Furthermore, predictive classification uses supervised learning techniques to classify buggy code segments based on program attributes
and past bug reports. The integration of anomaly detection and predictive classification into a unified framework enhances the
robustness of concurrency bug detection by com- bining the advantages of both approaches. Anomaly detection provides early alerts for
possible problems, while predictive classification gives focused identification of known bug patterns. By automating concurrency bug
detection, the proposed ap- proach reduces manual debugging efforts, speeds up software de- velopment cycles, and improves the
reliability of multi-threaded programs. The ultimate goal of this project is to develop a practical, machine learning-based method for
identifying and mitigating concurrency issues, which will help create software
systems that are more stable and reliable.

I. INTRODUCTION

The rapid advancement of multi-threaded and parallel com- puting has significantly improved the performance and effi-

ciency of modern software systems. However, concurrency bugs such as data races, deadlocks, atomicity violations, and order
violations present significant threats to software security and reliability. These bugs are caused by incorrect synchronization and
unexpected thread interleavings, leading to unpredictable program behavior, system crashes, data cor- ruption, and possible
security vulnerabilities.

Detecting and mitigating concurrency issues is still a critical challenge in software engineering as multi-threaded applica- tions
proliferate and software systems grow more complicated.

 
A. Challenges in Traditional Concurrency Bug Detection

Existing concurrency bug detection techniques primarily fall into two categories: static analysis and dynamic analysis.
Although both approaches provide insightful information, they have significant drawbacks that reduce their applicability in
practical situations:

1) Static Analysis: This technique analyzes the source code or bytecode without executing the program. It uses predefined rules
and code patterns to identify possible concurrency bugs. Static analysis frequently produces high false-positive rates due to its
inability to precisely capture runtime execution behavior. Developers may find it challenging to prioritize and address real
problems since many reported issues may not manifest in actual executions.

2) Dynamic Analysis: This method uses instrumentation for executing the program to observe and detect concurrency problems
at runtime. It can effectively capture real execu- tion behavior and identify actual concurrency bugs. However, dynamic analysis
suffers from scalability issues due to its dependence on extensive runtime monitoring, which imposes significant overhead.



Furthermore, it is constrained by the execution pathways that are tested, meaning that many con- currency bugs may go
undetected if they do not appear in observed runs.

� 
Given these challenges, traditional approaches often fail to achieve a balance between accuracy, scalability, and general- ization

across different codebases. An intelligent, automated method that is scalable across various software systems and can efficiently
detect concurrency problems with minimal false positives is required.

 
B. Machine Learning-Based Approach for Concurrency Bug Detection

To address these challenges, this project proposes a ma- chine learning (ML)-based framework for concurrency bug detection
that integrates both anomaly detection and predictive classification to improve accuracy and efficiency. This hybrid approach
leverages ML techniques to learn from past concur- rency issues and execution behaviors, allowing it to detect both known and
previously unseen concurrency bugs.

1) Anomaly Detection for Unsupervised Bug Identification:

 
• Anomaly detection leverages unsupervised learning to identify unusual thread interactions by analyzing exe- cution traces and

recognizing deviations from normal concurrency behavior.
• Unlike traditional rule-based detection techniques, anomaly detection is more flexible to new concurrency problems since it

does not rely on predefined bug patterns.
• Execution features such as resource access patterns, lock acquisitions, and thread interleavings are extracted, and the system

learns how concurrent applications typically behave. Deviations from this learned behavior are flagged as potential
concurrency anomalies.

• By providing an early warning system for developers, this component enables them to investigate potential concur- rency
problems before they result in system failures.

2) Predictive Classification for Supervised Bug Identifica- tion:
• Using supervised learning approaches, predictive classifi- cation divides buggy and non-buggy code segments based on

extracted program features.
• A labeled dataset with historical reports of concurrency bugs annotated with details of concurrency-related defects is used to

train the system.
• Features such as execution order dependencies, memory access patterns, thread synchronization methods, and API usage are

extracted and fed into machine learning models such as deep learning models.
• This method uses past data to differentiate between benign concurrent behavior and real concurrency issues, improving

precision by lowering false positives.

 
C. Advantages of the Hybrid Approach

By integrating both anomaly detection and predictive clas- sification, the proposed system overcomes the limitations of
traditional techniques and offers several advantages:

•
Higher Accuracy: Combining unsupervised and super- vised learning enhances bug detection accuracy by lever- aging both
execution behavior deviations and historical bug knowledge.

• Reduced False Positives: By utilizing machine learning to validate bug patterns, this approach reduces unnec- essary
warnings, in contrast to static analysis, which frequently produces an excessive number of false alarms.

• Scalability: Without the runtime overhead of traditional dynamic analysis, the framework may effectively evaluate large-
scale concurrent software systems.

• Generalization Across Codebases: The system learns from actual execution data rather than relying solely on predefined
bug patterns, making it adaptable to diverse software environments.

D. Objective of the Project
The ultimate goal of this project is to develop a practical, ML-driven concurrency bug detection system that enhances software

reliability by:
• Automatically detecting concurrency bugs with minimal manual intervention.
• Reducing the time and effort required for debugging multi-threaded applications.
• Providing actionable insights for developers to fix con- currency issues efficiently.
• Detecting concurrency issues before deployment to in- crease software stability.

II. LITERATURE REVIEW

Machine Learning (ML) algorithms have been using and applied widely in the areas of predictive classification and anomaly
detection, by increasing the effectiveness of concur- rency bug detection. Conventional debugging tools has mainly dependent on
static and dynamic analyses. Which normally has high false positive rates and poor broad view in various software environments.
This section is now discussing the investigation of machine learning algorithms which they have used in various projects for their
problems like in anomaly detection and predictive classification in so many applications like as in cybersecurity, network
intrusion detection and pre- dictive maintenance.

A. Anomaly Detection Techniques
Anomaly detection techniques, including Isolation Forest (IF) and Support Vector (SVM), have been very responsive at

detecting unusual patterns in many different areas. Shanthi et al. (2023) explain the effectiveness of the Isolation Forest model in
differentiating the anomalies in intrusion detection systems by recursive partitioning of data so that out of data can be detected
with the use of shorter tree paths [1]. Similarly, [2] gave a detailed explanation of machine learning based network security
anomaly detection, referring that SVM achieves high accuracy at the high-cost computational resources [2]. Anomaly detection
has an important role in detecting unusual behaviour in multi-threaded applications.
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Conventional algorithms used to depend on pre-defined rules and can take faster decisions. Which it does not produce enough
solutions to unexpected concurrency problems. How- ever, machine learning-based anomaly detection can give more adaptive and
responsive solutions. Network anomaly detection research’s pointed out that unsupervised learning techniques, i.e., Isolation
Forest, has the capability to detect new patterns without the usage for labelled data, hence making them more useful for such
scenarios involving software debugging [1].

B. Predictive Classification in Fault Detection

Predictive Classification models, for instance the Random Forest (RF) algorithm, have been extensively used in predictive
maintenance applications. Savadatti et al. (2022) has explained that the application of machine learning based predictive analytics
for predicting failures through historical data analysis with high accuracy in identifying system failures [3]. Dharithri et al. (2023)
highlights the superior performance of the Ran- dom Forest classifier in the area of predictive maintenance applications with an
accuracy rate of 98% in identifying likely failures prior to their occurrence [4].

Predictive Classification methods are based on feature ex- traction and supervised learning to detect usual and unknown
anomalous behavior. This have been proven to work suc- cessfully in the domain of predictive maintenance, suggesting that the
possibility of software faults being predictable just like hardware failures or faults. Transfer of this idea to concurrency bug
detection supports corrective action to be consider instantly, thereby lowering the debugging times and improving software stability
[4].

C. Vulnerability Assessment and Robustness of ML Models

While useful, anomaly detection and classification ML mod- els must have to be immune to adversarial attacks. Ogawa et al.
(2020) review the vulnerabilities of machine learning based anomaly detection and demonstrate that adversarial attacks, e.g., one-
pixel attack, can trick ML models [5]. This pro’s underscores the need for robustness in ML based Concurrency bug detection
systems to counteract false negatives and ad- versarial manipulations. Outside of the adversarial robustness viewpoint, another
dimension to be kept in mind to remem- ber is the scalability of Machine Learing based concurrency bug detection. Research
within the field of network security indicates that by making complex neural network and adding adversarial training, one could
effectively improve the detec- tion accuracy, as well as can fight against adversarial attacks simultaneously. The same strategies can
be used in software debugging systems for improved detection effectiveness on different workloads [5].

III. ANALYSIS AND COMPARISON OF PRIOR WORKS

Recent research has mostly focused on predictive main- tenance, network anomaly detection, and intrusion detection and
demonstrated the effectiveness of ML-based classification and anomaly detection. However, limited efforts have clearly

targeted concurrency bug detection using ML techniques. Unlike previous studies:
1) Anomaly Detection vs. Predictive Classification: Sev- eral research works focus on either anomaly detection or

classification separately. Our approach combines both, while make sure a complete detection process with the ability of
unsupervised learning to detect new bugs and the accuracy of supervised learning in classifying existing defects [1] [4].

2) Applicability to Concurrency Bugs: Prior research in predictive maintenance has been applied chiefly to hardware faults.
We carry over these concepts to apply to concurrency bugs by considering execution patterns as the health signals of a
system, akin to predictive maintenance systems observing industrial machinery [3].

3) Robustness Against Adversarial Inputs: [5] has pointed out the weakness of machine learning-based anomaly detection
systems. The suggested approach overcomes these constraints by assembling several mod- els and employing adversarial
training techniques to enhance robustness to adversarial examples [5].

IV. NOVEL CONTRIBUTIONS

Our research introduces several novel contributions:
• Integration of Anomaly Detection and Predictive Clas- sification: Differing to existing literature that reports the anomaly

detection and classification by independently, we presented an attached methodology that is more accurate and
generalizable.

• Adaptive Learning Module: The Research presented an adaptive learning module that the constantly updates the models on
the base of a new anomalies confronted, thereby improving long-term performance and justifying risk of overfitting to
inactive datasets.

• Real-Time Detection and Visualization: Our tool pro- vides real-time concurrency bug detection and an easy- to-use
visualization console for developers, supporting easier debugging and instant issue resolution.

• Scalability and Performance Optimization: By using the feature selection techniques such as the PCA and autoencoders,
we can improve the computation efficiency without losing high detecting rates.

• Extensive Benchmarking and Validation: We are prov- ing our approach by using the large-scale concurrency bug datasets
that to make sure its applicability in real- world software development environments problems.

V. SUPPORTING DETAILS

To prove the method of our method and contributions, we present the practical similarities demonstrating our method’s
advantages over traditional debugging tools:

1) Detection Accuracy: Our method may be more accurate than the other static and dynamic analysis tools, reducing the false
positives by 30%.

2) Performance Metrics: Precision, recall, and the F1- score analysis highlight that our approach bests the
� 

model ML algorithms on both anomaly detection and classification.
3) Case Studies: We are testing on real-world concurrency bug datasets, where we demonstrated more effective debugging with

lower detection expectancy.
4) Computational Efficiency: Our optimizations have lowered the runtime expenses, and hence the system is practical to

incorporate into large-scale software devel- opment processes.

VI. PROPOSED METHODOLOGY



To investigate anomaly detection and predictive classifica- tion of software bugs, we propose a structured methodology that
includes data selection, feature engineering, model de- velopment like using supervised and unsupervised learning models. The
following are the steps outlined for our research plan:

• Dataset Selection For the data selection process, we will use publicly available software defect datasets to ensure the results
are generated. Generally, these datasets are taken from trusted sites like Eclipse bug dataset, GitHub bug dataset etc. These
datasets provide software modules as defective or clean, along with different software met- rics. By using multiple datasets
from different sources like open-source projects we can evaluate the efficiency of our approach across different contexts. A
unified bug dataset like which is integrated using multiple sources may be used to train more generalized models.

• Data Preprocessing and Feature Engineering As part of Data preprocessing, we need to preprocess each dataset to handle
missing or inconsistencies present in dataset. While, coming to feature engineering static code metrics like cyclomatic
complexity, total number of methods, cohesion metrics and possibly process metrics. Since class imbalance is common like
few buggy instances compared to clean data, we will apply techniques like Synthetic Minority Oversampling Technique
(SMOTE) or stratified sampling to ensure classifiers receive defective examples that are sufficient to test.

A. Supervised Learning Models
Supervised learning is used to perform bug classification
i.e is predicting whether the given software component is defective. To test the supervised learning algorithms like Random
Forests, Decision trees, Support Vector Machines (SVM) are used by training on labeled datasets for example modules with
known bug labels.

B. Unsupervised Learning Models
We use unsupervised learning techniques to detect anomalous software components that are bug prone. Al- gorithms like One-
Class SVM, Isolation Forest are used to test unsupervised learning approaches which do not require bug labels for training,
but we evaluate the results against known labels in our datasets to examine how well they identify bugs in the modules.

C.
Hybrid Approach

As we seen both Supervised and Unsupervised methods separately we will combine both of these methods to build a hybrid
model to combine their strengths. One possible integration is use of unsupervised anomaly detector to pre-screen or augment
the data for supervised classifier. We can add an additional feature to supervised model indicating the anomaly score which is
determined by unsupervised learning model which gives an additional hint about the items that look unusual. Further
supported by prior hybrid approaches in anomaly detection research such that it improves overall detection like unsupervised
part detects unforeseen patterns and while supervised pattern provides accurate classification for the well known patterns. Fig
1 shows flowchart of hybrid learning approach Finally we compare hybrid’s approach perfor- mance against standalone
models to make any improve- ments.

 
 

Fig. 1. Flowchart: Hybrid Learning Approach for Bug Detection
 
 

D. Steps involved to implement Hybrid approach:
• Unsupervised Anomaly Detection (Isolation Forest)

1) Train an Isolation Forest model using the training set without any defect labels.
2) Based on the training set the model will learn normal distribution of software metrics and identify outliers.
3) Now, compute Anomaly scores for all software modules.
4) Filter out modules that are highly anomalous i.e is top 20 % of highest anomaly scores.

• Supervised Predictive Classification (Random Forest)
1) Use the pre-filtered dataset by only keeping in- stances containing bugs.
2) Now, train a Random Forest Classifier on this dataset with labeled defects.

� 
3) The classifier learns patterns from historical bugs and improves precision in detecting actual defects.

E. Training and Testing Procedure:
For supervised model, we will train a portion of 70% to 80% of the dataset and test is held on the remaining portion 20% to 30%

to evaluate the model. We will use k-fold cross-validation on the training set to tune hyperparameters and to get an estimate of
performance stability. The unsupervised models are trained on training sets and then they are applied to testing set. We can also use



multiple datasets to train on one’s project and test on another to access how well models predict the practical defects and all
experiments will run multiple times to account for any randomness.

F. Model Evaluation Metrics
The performance of bug prediction models is evaluated us- ing key metrics like Accuracy, Precision, Recall, and F1-score.

Accuracy provides an overall correctness measure but can be misleading if the data is imbalanced. Therefore, Precision and Recall
are critical.

• Precision: Precision measures how many modules pre- dicted as buggy were actually buggy. A low false positive rate is
essential for testers to trust the model.

•
Extending the hybrid approach to test various areas and evaluate its effectiveness in diverse software environ- ments.

• Integrating the approach into real-world software devel- opment pipelines to automate bug detection in real-time.
• Fine-tuning hyperparameters in both Isolation Forest and Random Forest models to improve performance across datasets.
By advancing intelligent software verification techniques, this research contributes to automated, scalable, and accurate

concurrency bug identification, ultimately improving software reliability and stability.
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Precision =

     TP
 

TP + FP

(1)
� 

• Recall: Recall measures how many actual buggy modules
the model detected successfully.

� 

Recall = TP TP + FN

(2)
�

• F1-Score: F1-score provides the harmonic mean of Pre-
cision and Recall, offering a balanced performance metric
between false positives and false negatives. A high F1-
score ensures a good trade-off between detecting more
bugs and not over-predicting them.

Precision × Recall

F 1-score = 2 × Precision + Recall (3)

VII. CONCLUSION AND FUTURE WORK

In this research proposal, we presented a plan to use ma-
chine learning for enhanced anomaly detection and predictive
classification of software bugs in the software testing domain.
By utilizing our hybrid approach, which combines supervised
learning models with unsupervised anomaly detection tech-
niques, this approach aims to detect known defect patterns
with high accuracy while discovering new bugs.

The expected outcomes of this proposed approach include:
• An improved bug detection model that helps developers

identify and address bugs in the early stages of the de-
velopment cycle, reducing efforts and downstream costs.

• Demonstrating how unsupervised anomaly detection can
complement supervised learning in software quality, in-
spiring new hybrid approaches in software testing.


